NGS Pretesting and QC Using Illumina Infinium Arrays
J. Romm, H. Ling, P. Zhang, I. McMullen, P. Witmer, K. Doheny
Center for Inherited Disease Research (CIDR), IGM, JHU-SOM, Baltimore, MD

Introduction
The Center for Inherited Disease Research (CIDR) provides high quality next-generation sequencing (NGS), genotyping and statistical genetics consultation to investigators working to discover genes that contribute to disease. To maintain a high-quality service at a cost effective price, CIDR routinely performs sample pretesting to evaluate DNA quality, detect contamination/sample mixtures, confirm biological gender assignments, and check for Mendelian inconsistencies and inbreeding prior to initiating laboratory processes. In addition, this process creates a genetic barcode for each samples which assures proper sample and data tracking and allows for an independent measure of NGS variant calls quality.

Methods
For NGS pretesting, CIDR uses a dense Illumina Infinium array, which permits extended analyses for 1st and 2nd degree relationships, unexpected relationships, ethnicity and large chromosomal anomalies. In addition, we calculate concordance and sensitivity to call heterozygotes, providing a critical quality control measure for NGS data. We routinely used the Illumina CoreExome array, but have recently switched to the newly available Illumina QC array, which allows for everything mentioned and provides a cost savings.

Workflow

![Workflow Diagram]

- Samples received from PI
- Sample receipt QC
 - Quantitation, Size Evaluation
- PreTesting
 - Genotyping Array
 - QC array or CoreExome (Illumina)
- SNP Technical Filter Applied
- Sample Performance Evaluated

Figure 1
Contamination is detected using VerifyIDintensity
Chromosome Anomalies are detected using GWASTools
Ethnicity is evaluated using SmartPCA
Gender is evaluated by plotting mean R Chr X x ChrY
Relationships are evaluated using KING

Figure 2
Chr 8 interstitial homozygous deletion detected with the Illumina CoreExome Array.

Figure 3
Samples that were annotated by the sender as one ethnicity that are genotyping as another. Detected with the Illumina QC array.

Figure 4
Several samples annotated as the incorrect gender. Detected with the Illumina QC array.

Conclusion
Using a dense Illumina Infinium array is effective for identification of various sample issues before a project begins NGS. This is a cost-saving measure for the NGS project – better to identify sample issues up front cost-effectively than the costly investment of sequencing samples with unresolvable issues. In addition, the array genotype calls allows for an measure of NGS variant call quality (concordance) and completeness (sensitivity to heterozygote array calls).

References: